Search results for "Mitogen-Activated Protein Kinase 8"

showing 6 items of 6 documents

JNK and AP-1 mediate apoptosis induced by bortezomib in HepG2 cells via FasL/caspase-8 and mitochondria-dependent pathways

2006

The proteasome inhibitor bortezomib is an efficacious apoptotic agent in many tumor cells. This paper shows that bortezomib induced apoptosis in human hepatoma HepG2 cells associated with many modifications in the expression of survival or death factors. Although bortezomib increased the level of the protective factors HSP70 and HSP27, the effects of the drug that favour cell death were predominant. These events include accumulation of c-Jun, phospho-c-Jun and p53; increase in FasL level with activation of caspase-8; changes related to members of Bcl-2 family with increase in the level of pro-apoptotic members and decrease in that of anti-apoptotic ones; dissipation of mitochondrial potenti…

Cancer ResearchProgrammed cell deathFas Ligand ProteinProto-Oncogene Proteins c-junClinical BiochemistryPharmaceutical ScienceAntineoplastic AgentsApoptosisCaspase 8Cell LineBortezomibHsp27Cell Line TumormedicineHumansMitogen-Activated Protein Kinase 8Protease InhibitorsAP1Heat-Shock ProteinsPharmacologyCaspase 8Membrane GlycoproteinsbiologyJNK.Bortezomibc-JunLiver NeoplasmsBiochemistry (medical)c-junhepatomaCell BiologyapoptosiBoronic AcidsMitochondriaCell biologyTranscription Factor AP-1AP-1 transcription factorLiverProto-Oncogene Proteins c-bcl-2ApoptosisCaspasesPyrazinesTumor Necrosis Factorsbiology.proteinCancer researchProteasome inhibitorSignal Transductionmedicine.drugApoptosis
researchProduct

Ultraviolet light-induced apoptotic death is impaired by the HMG-CoA reductase inhibitor lovastatin.

2003

HMG-CoA reductase inhibitors (i.e., statins) attenuate C-terminal isoprenylation of Rho GTPases, thereby inhibiting UV-C-induced activation of c-Jun-N-terminal kinases/stress-activated protein kinases (JNKs/SAPKs). Inhibition of UV-C-triggered JNK/SAPK activation by lovastatin is due to inhibition of Rac-SEK1/MKK4-mediated phosphorylation of JNKs/SAPKs at Thr183/Tyr185. UV-C-stimulated phosphorylation of p38 kinase (Thr180/Tyr182) is also impaired by lovastatin. Cell killing provoked by UV-C irradiation was significantly inhibited by lovastatin. This was paralleled by a reduced frequency of chromosomal aberrations, accelerated recovery from UV-C-induced transient replication blockage, inhib…

DNA ReplicationUltraviolet Raysp38 mitogen-activated protein kinasesBiophysicsApoptosisCHO CellsBiochemistryp38 Mitogen-Activated Protein KinasesCricetinaemedicineUltraviolet lightAnimalsMitogen-Activated Protein Kinase 8LovastatinMolecular BiologyCaspasebiologyKinaseCell BiologyCell biologyrac GTP-Binding ProteinsEnzyme ActivationCell killingApoptosisCaspasesHMG-CoA reductasebiology.proteinLovastatinHydroxymethylglutaryl-CoA Reductase InhibitorsMitogen-Activated Protein Kinasesmedicine.drugBiochemical and biophysical research communications
researchProduct

Design and synthesis of 1-aryl-5-anilinoindazoles as c-Jun N-terminal kinase inhibitors.

2012

Starting from pyrazole HTS hit (1), a series of 1-aryl-1H-indazoles have been synthesized as JNK3 inhibitors with moderate selectivity against JNK1. SAR studies led to the synthesis of 5r as double digital nanomolar JNK3 inhibitor with good in vivo exposure.

IndazolesStereochemistryClinical BiochemistryPharmaceutical SciencePlasma protein bindingPyrazoleBiochemistrychemistry.chemical_compoundStructure-Activity RelationshipIn vivoMitogen-Activated Protein Kinase 10Drug DiscoveryStructure–activity relationshipAnimalsMitogen-Activated Protein Kinase 8Molecular BiologyProtein Kinase InhibitorsAniline CompoundsChemistryKinaseArylOrganic Chemistryc-junJNK Mitogen-Activated Protein KinasesBrainCombinatorial chemistryRatsDrug DesignMolecular MedicineSelectivityHalf-LifeProtein BindingBioorganicmedicinal chemistry letters
researchProduct

Evolution of osmosensing signal transduction in Metazoa: stress-activated protein kinases p38 and JNK.

2001

Sponges (Porifera) represent the most basal branch of the Metazoa alive today. We show that two central stress-activated protein kinases involved in the osmosensing pathway, p38 mitogen-activated protein kinase (MAPK) and JNK, can complement for the ancestral MAPK Hog1 in the yeast Saccharomyces cerevisiae. S. cerevisiae mutants lacking Hog1 (hog1-Delta 1) have been complemented with the sponge SDJNK and SDp38 genes. Western blotting has revealed that, after transformation, the hog1-Delta 1+ SDJNK(sense) and hog1-Delta 1+ SDp38(sense) clones express the sponge proteins. Functional studies have demonstrated that the complemented clones grow under hyperosmotic conditions (0.6 M NaCl). Further…

MAPK/ERK pathwayxHistologySaccharomyces cerevisiae ProteinsMAP Kinase Kinase 4p38 mitogen-activated protein kinasesSaccharomyces cerevisiaeMutantSaccharomyces cerevisiaeSodium Chloridep38 Mitogen-Activated Protein KinasesPathology and Forensic MedicineTransformation GeneticOsmotic PressureAnimalsMitogen-Activated Protein Kinase 8PhosphorylationProtein kinase APhylogenyMitogen-Activated Protein Kinase KinasesbiologyKinaseJNK Mitogen-Activated Protein KinasesCell BiologyWater-Electrolyte Balancebiology.organism_classificationCell biologyPoriferaPhosphorylationSignal transductionMitogen-Activated Protein KinasesSignal TransductionCell and tissue research
researchProduct

Genetic Deletion of JNK1 and JNK2 Aggravates the DSS-Induced Colitis in Mice

2007

The c-Jun N-terminal kinases (JNKs) are considered as novel targets for therapy of inflammatory bowel diseases (IBD). However, the relevant JNK isoforms have to be elucidated. Here, we analyze the individual contribution of the JNK1 and JNK2 isoforms in a dextran sulfate sodium (DSS) model of experimental colitis. JNK1 and JNK2 knockout mice (JNK1 ko, JNK2 ko) and their wild-type controls (WT1, WT2) received three cycles of DSS treatment, each consisting of 1.7% DSS for 5 days, followed by 5 days with water. Animals were daily evaluated by a disease activity index (DAI) comprising measurement of body weight, estimation of stool consistency, and test for occult blood/gross rectal bleeding. A…

medicine.medical_specialtyPathologyCryptApoptosisMice TransgenicInflammatory bowel diseaseGastroenterologyProinflammatory cytokineMiceCecumImmune systemInternal medicineWeight LossAnimalsMitogen-Activated Protein Kinase 9MedicineMitogen-Activated Protein Kinase 8Single-Blind MethodIntestinal MucosaColitisCrosses Geneticbusiness.industryDextran SulfateColitismedicine.diseaseMice Inbred C57BLmedicine.anatomical_structureApoptosisChronic DiseaseKnockout mouseSurgeryGastrointestinal HemorrhagebusinessJournal of Investigative Surgery
researchProduct

Inhibition of Protein Isoprenylation Impairs Rho-Regulated Early Cellular Response to Genotoxic Stress

2000

Activation of c-Jun N-terminal kinases (JNKs) and nuclear factor-kappaB (NF-kappaB) are early cellular responses to genotoxic stress involved in the regulation of gene expression. Pretreatment of cells with the hydroxymethyl glutaryl-CoA reductase inhibitor lovastatin blocked stimulation of JNK1 activity by UV irradiation and by treatment with the alkylating compound methyl methanesulfonate but did not affect activation of extracellular signal-regulated kinase 2 by UV light. Lovastatin also attenuated UV-induced degradation of the NF-kappaB inhibitor IkappaBalpha. The effects of lovastatin on UV-triggered stimulation of JNK1 as well as on IkappaBalpha degradation were reverted by cotreatmen…

rho GTP-Binding ProteinsProtein PrenylationStimulationClostridium difficile toxin BCHO CellsGenotoxic StressBiologychemistry.chemical_compoundCricetinaemedicineAnimalsHumansMitogen-Activated Protein Kinase 8LovastatinPharmacologyMutagenicity TestsKinaseFarnesyltransferase inhibitorNF-kappa BMethyl methanesulfonateCell biologyIκBαchemistryMolecular MedicineLovastatinHydroxymethylglutaryl-CoA Reductase InhibitorsMitogen-Activated Protein KinasesHeLa CellsSignal Transductionmedicine.drugMolecular Pharmacology
researchProduct